Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2023
Interstitial Lung Disease in Veterans: Leveraging Big Data to Bridge the Evidence and Practice Gaps.
2023
2023
PURPOSE
The geometric patterns of ventricular remodeling are determined using indexed left ventricular mass (LVM), end-diastolic volume (LVEDV) and concentricity, most often measured using the mass-to-volume ratio (MVR). The aims of this study were to validate lean body mass (LBM)-based allometric coefficients for scaling and to determine an index of concentricity that is independent of both volume and LBM.
METHODS
Participants from the UK Biobank who underwent both CMR and dual-energy X-ray absorptiometry (DXA) during 2014-2015 were considered (n = 5064). We excluded participants aged ≥ 70 years or those with cardiometabolic risk factors. We determined allometric coefficients for scaling using linear regression of the logarithmically transformed ventricular remodeling parameters. We further defined a multiplicative allometric relationship for LV concentricity (LVC) adjusting for both LVEDV and LBM.
RESULTS
A total of 1638 individuals (1057 female) were included. In subjects with lower body fat percentage (< 25% in males, < 35% in females, n = 644), the LBM allometric coefficients for scaling LVM and LVEDV were 0.85 ± 0.06 and 0.85 ± 0.03 respectively (R = 0.61 and 0.57, P < 0.001), with no evidence of sex-allometry interaction. While the MVR was independent of LBM, it demonstrated a negative association with LVEDV in (females: r = - 0.44, P < 0.001; males: - 0.38, P < 0.001). In contrast, LVC was independent of both LVEDV and LBM [LVC = LVM/(LVEDV × LBM)] leading to increased overlap between LV hypertrophy and higher concentricity.
CONCLUSIONS
We validated allometric coefficients for LBM-based scaling for CMR indexed parameters relevant for classifying geometric patterns of ventricular remodeling.
View on PubMed2023
2023
2023
2023
2023
BACKGROUND
Adoption and outcomes for conduction system pacing (CSP), which includes His bundle pacing (HBP) or left bundle branch area pacing (LBBAP), in real-world settings are incompletely understood. We sought to describe real-world adoption of CSP lead implantation and subsequent outcomes.
METHODS
We performed an online cross-sectional survey on the implantation and outcomes associated with CSP, between November 15, 2020, and February 15, 2021. We described survey responses and reported HBP and LBBAP outcomes for bradycardia pacing and cardiac resynchronization CRT indications, separately.
RESULTS
The analysis cohort included 140 institutions, located on 5 continents, who contributed data to the worldwide survey on CSP. Of these, 127 institutions (90.7%) reported experience implanting CSP leads. CSP and overall device implantation volumes were reported by 84 institutions. In 2019, the median proportion of device implants with CSP, HBP, and/or LBBAP leads attempted were 4.4% (interquartile range [IQR], 1.9-12.5%; range, 0.4-100%), 3.3% (IQR, 1.3-7.1%; range, 0.2-87.0%), and 2.5% (IQR, 0.5-24.0%; range, 0.1-55.6%), respectively. For bradycardia pacing indications, HBP leads, as compared to LBBAP leads, had higher reported implant threshold (median [IQR]: 1.5 V [1.3-2.0 V] vs 0.8 V [0.6-1.0 V], p = 0.0008) and lower ventricular sensing (median [IQR]: 4.0 mV [3.0-5.0 mV] vs. 10.0 mV [7.0-12.0 mV], p < 0.0001).
CONCLUSION
In conclusion, CSP lead implantation has been broadly adopted but has yet to become the default approach at most surveyed institutions. As the indications and data for CSP continue to evolve, strategies to educate and promote CSP lead implantation at institutions without CSP lead implantation experience would be necessary.
View on PubMed2023