Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
1989
1989
A 41-kDa protein, which was specifically phosphorylated upon incubation with natural purified murine interleukin 1, was recently identified by us [Martin, M., Lovett, D. H. and Resch, K. (1986) Immunobiology 171, 165-169] in highly purified plasma membranes from the human tumor cell line K 562. An in vitro assay was used to investigate and characterize the phosphorylation induced by interleukin 1, possibly involved in signal transduction and generation. Plasma membranes were incubated with radiolabeled ATP in the presence of purified natural murine interleukin 1, or recombinant human interleukin 1 alpha and the pattern of phosphoproteins was studied after separation by SDS/PAGE and subsequent autoradiography. A 41-kDa protein (pp41) was specifically phosphorylated on a tyrosine residue in the presence of interleukin 1 in a dose- and time-dependent manner. The protein showed a weak background phosphorylation in the absence of monokine. Phosphorylation took place very efficiently at 0 degrees C, whereas phosphatases were not active at that temperature. At 37 degrees C, a rapid dephosphorylation was observed which was inhibited specifically by Zn2+ and vanadate. The interleukin-1-specific induction of the phosphorylation could also be observed after detergent solubilization of the plasma membranes. Affinity labeling with an ATP analogue revealed an ATP-binding and cleaving site at 41 kDa. Interleukin 1 did not induce the phosphorylation of p41 in plasma membranes obtained from a subclone of K 562, which did not respond to interleukin 1 with growth inhibition, as was reported recently for the K 562 mother line [Lovett, D. H., Kozan, B., Hadam, M., Resch, K. and Gemsa, D. (1986) J. Immunol. 136, 340-347]. These data suggest that the interleukin-1 receptor is functionally linked to a protein-tyrosine kinase, which is implicated in its biological function.
View on PubMed1989
Reverse transformation was induced in Chinese hamster ovary (CHO) cells transfected with and stably expressing the m5 subtype of the muscarinic acetylcholine receptor when stimulated with the muscarinic agonist, carbachol. Atropine, a muscarinic antagonist, blocked the carbachol-stimulated reverse transformation. CHO cells not transfected with the muscarinic receptor did not change with added carbachol. PMA induced reverse transformation without increasing cAMP accumulation in CHO cells. Carbachol, prostaglandin E2, and cholecystokinin increased cAMP accumulation but only carbachol caused reverse transformation. Carbachol-stimulated cAMP accumulation occurred at a higher concentration (EC50 10 microM) than did carbachol-stimulated reverse transformation (EC50 63 nM). Muscarinic m5 acetylcholine receptor transfected into CHO cells can induce reverse transformation which may be independent of cAMP.
View on PubMed1989
1989
1989