Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2000
The integrin family (Hynes, R.O., 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25) is composed of at least 24 heterodimers formed from eight beta subunits and 18 alpha subunits. Thus far, mice expressing null mutations of seven of the eight beta subunits and 13 of the 18 known alpha subunits have been generated, With only a few exceptions, the phenotypes of each of the knockout lines are quite distinct. Studies utilizing integrin knockout mice and cells derived from these mice have provided considerable and sometimes surprising insights into unique functions of individual members of this family.
View on PubMed2000
Members of the integrin family of adhesion receptors mediate both cell-cell and cell-matrix interactions and have been shown to play vital roles in embryonic development, wound healing, metastasis, and other biological processes. The integrin alpha9beta1 is a receptor for the extracellular matrix proteins osteopontin and tenacsin C and the cell surface immunoglobulin vascular cell adhesion molecule-1. This receptor is widely expressed in smooth muscle, hepatocytes, and some epithelia. To examine the in vivo function of alpha9beta1, we have generated mice lacking expression of the alpha9 subunit. Mice homozygous for a null mutation in the alpha9 subunit gene appear normal at birth but develop respiratory failure and die between 6 and 12 days of age. The respiratory failure is caused by an accumulation of large volumes of pleural fluid which is rich in triglyceride, cholesterol, and lymphocytes. alpha9(-/-) mice also develop edema and lymphocytic infiltration in the chest wall that appears to originate around lymphatics. alpha9 protein is transiently expressed in the developing thoracic duct at embryonic day 14, but expression is rapidly lost during later stages of development. Our results suggest that the alpha9 integrin is required for the normal development of the lymphatic system, including the thoracic duct, and that alpha9 deficiency could be one cause of congenital chylothorax.
View on PubMed2000
2000
2000
2000
2000
2000
The matrix metalloproteinase gelatinase A plays a key role in the evolution of glomerular injury and is a major contributing factor to the development of glomerulosclerosis. Prior studies have focused on a potent cis-acting enhancer element located in the near 5'-flanking region of the rat and human gelatinase A genes (Harendza, S., Pollock, A. S., Mertens, P. R., and Lovett, D. H. (1995) J. Biol. Chem. 270, 18286-18796; Mertens, P. R., Alfonso-Jaume, M. A., Steinmann, K., and Lovett, D. H. (1999) J. Am. Soc. Nephrol. 10, 2480-2487). Given the combinatorial nature of transcriptional regulation, we examined additional regions of the 5'-flanking region of the rat gelatinase A gene to identify further regulatory elements. In this study the identification of a silencing element located between -1903 and -1847 base pairs of the 5'-flanking region of the rat gelatinase A gene is reported. Sequence analysis, electrophoretic mobility studies, and transfection experiments demonstrate that a specific binding sequence for the hematopoietic transcription factor PU.1 is present within the silencing sequence. PU.1 activity is absolutely required for the expression of silencing activity within the context of transfected glomerular mesangial cells. Western blots identify the PU.1 protein within nuclear extracts of mesangial cells, and cotransfection with a PU.1 expression vector directly augments silencing activity. These studies underscore the complex patterns of gelatinase A transcriptional regulation and also strongly suggest that glomerular mesangial cells are ultimately derived from bone marrow cells.
View on PubMed