Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2006
Protein kinase C epsilon (PKCepsilon) is an important intracellular signaling molecule in primary afferent nociceptors, implicated in acute and chronic inflammatory as well as neuropathic pain. In behavioral experiments inflammatory mediators produce PKCepsilon-dependent hyperalgesia only in male rats. The mechanism underlying this sexual dimorphism is unknown. We show that the hormone environment of female rats changes the nociceptive signaling in the peripheral sensory neuron. This change is maintained in culture also in the absence of a gender-simulating environment. Stimulation of beta(2)-adrenergic receptors (beta(2)-AR) leads to PKCepsilon activation in cultured dorsal root ganglia (DRG) neurons derived from male but not from female rats. Addition of estrogen to male DRG neurons produces a switch to the female phenotype, namely abrogation of beta(2)-AR-initiated activation of PKCepsilon. Estrogen interferes downstream of the beta(2)-AR with the signaling pathway leading from exchange protein activated by cAMP (Epac) to PKCepsilon. The interfering action is fast indicating a transcriptional-independent mechanism. Estrogen has a dual effect on PKCepsilon. If applied before beta(2)-AR or Epac stimulation, estrogen abrogates the activation of PKCepsilon. In contrast, estrogen applied alone leads to a brief translocation of PKCepsilon. Also in vivo the activity of estrogen depends on the stimulation context. In male rats, intradermal injection of an Epac activator or estrogen alone induces mechanical hyperalgesia through a PKCepsilon-dependent mechanism. In contrast, injection of estrogen preceding the activation of Epac completely abrogates the Epac-induced mechanical hyperalgesia. Our results suggest that gender differences in nociception do not reflect the use of generally different mechanisms. Instead, a common set of signaling pathways can be modulated by hormones.
View on PubMed2006
2006
2006
2006
2006
Lipogenic diets that are completely devoid of methionine and choline (MCD) induce hepatic steatosis. MCD feeding also provokes systemic weight loss, for unclear reasons. In this study, we found that MCD feeding causes profound hepatic suppression of the gene encoding stearoyl-coenzyme A desaturase-1 (SCD-1), an enzyme whose regulation has significant effects on metabolic rate. Within 7 days of MCD exposure, hepatic SCD-1 mRNA decreased to nearly undetectable levels. By day 21, SCD-1 protein was absent from hepatic microsomes and fatty acids showed a decrease in monounsaturated species. These changes in hepatic SCD-1 were accompanied by signs of hypermetabolism. Calorimetry revealed that MCD-fed mice consumed 37% more energy than control mice (P = 0.0003). MCD feeding also stimulated fatty acid oxidation, although fatty oxidation genes were not significantly upregulated. Interestingly, despite their increased metabolic rate, MCD-fed mice did not increase their food consumption, and as a result, they lost 26% of their body weight in 21 days. In summary, MCD feeding suppresses SCD-1 in the liver, which likely contributes to hypermetabolism and weight loss. MCD feeding also induces hepatic steatosis, by an independent mechanism. Viewed together, these two disparate consequences of MCD feeding (weight loss and hepatic steatosis) give the appearance of an unusual form of lipodystrophy.
View on PubMed2006