Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2010
COX-2 has been implicated in Kaposi's sarcoma-associated herpesvirus (KSHV) latency and pathogenesis (A. George Paul, N. Sharma-Walia, N. Kerur, C. White, and B. Chandran, Cancer Res. 70:3697-3708, 2010; P. P. Naranatt, H. H. Krishnan, S. R. Svojanovsky, C. Bloomer, S. Mathur, and B. Chandran, Cancer Res. 64:72-84, 2004; N. Sharma-Walia, A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog. 6:e1000777, 2010; N. Sharma-Walia, H. Raghu, S. Sadagopan, R. Sivakumar, M. V. Veettil, P. P. Naranatt, M. M. Smith, and B. Chandran, J. Virol. 80:6534-6552, 2006). However, the precise regulatory mechanisms involved in COX-2 induction during KSHV infection have never been explored. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 upon KSHV de novo infection. Promoter analysis using human COX-2 promoter deletion and mutation reporter constructs revealed that nuclear factor of activated T cells (NFAT) and the cyclic AMP (cAMP) response element (CRE) modulate KSHV-mediated transcriptional regulation of COX-2. Along with multiple KSHV-induced signaling pathways, infection-induced prostaglandin E(2) (PGE(2)) also augmented COX-2 transcription. Infection of endothelial cells markedly induced COX-2 expression via a cyclosporine A-sensitive, calcineurin/NFAT-dependent pathway. KSHV infection increased intracellular cAMP levels and activated protein kinase A (PKA), which phosphorylated the CRE-binding protein (CREB) at serine 133, which probably led to interaction with CRE in the COX-2 promoter, thereby enhancing COX-2 transcription. PKA selective inhibitor H-89 pretreatment strongly inhibited CREB serine 133, indicating the involvement of a cAMP-PKA-CREB-CRE loop in COX-2 transcriptional regulation. In contrast to phosphatidylinositol 3-kinase and protein kinase C, inhibition of FAK and Src effectively reduced KSHV infection-induced COX-2 transcription and protein levels. Collectively, our study indicates that mediation of COX-2 transcription upon KSHV infection is a paradigm of a complex regulatory milieu involving the interplay of multiple signal cascades and transcription factors. Intervention at each step of COX-2/PGE(2) induction can be used as a potential therapeutic target to treat KSHV-associated neoplasm and control inflammatory sequels of KSHV infection.
View on PubMedPTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors.
2010
2010
UNLABELLED
Diabetic obesity is associated with increased fracture risk in adults and adolescents. We find in both adolescent and adult mice dramatically inferior mechanical properties and structural quality of cortical bone, in agreement with the human fracture data, although some aspects of the response to obesity appear to differ by age.
INTRODUCTION
The association of obesity with bone is complex and varies with age. Diabetic obese adolescents and adult humans have increased fracture risk. Prior studies have shown reduced mechanical properties as a result of high-fat diet (HFD) but do not fully address size-independent mechanical properties or structural quality, which are important to understand material behavior.
METHODS
Cortical bone from femurs and tibiae from two age groups of C57BL/6 mice fed either HFD or low-fat diet (LFD) were evaluated for structural and bone turnover changes (SEM and histomorphometry) and tested for bending strength, bending stiffness, and fracture toughness. Leptin, IGF-I, and non-enzymatic glycation measurements were also collected.
RESULTS
In both young and adult mice fed on HFD, femoral strength, stiffness, and toughness are all dramatically lower than controls. Inferior lamellar and osteocyte alignment also point to reduced structural quality in both age groups. Bone size was largely unaffected by HFD, although there was a shift from increasing bone size in obese adolescents to decreasing in adults. IGF-I levels were lower in young obese mice only.
CONCLUSIONS
While the response to obesity of murine cortical bone mass, bone formation, and hormonal changes appear to differ by age, the bone mechanical properties for young and adult groups are similar. In agreement with human fracture trends, adult mice may be similarly susceptible to bone fracture to the young group, although cortical bone in the two age groups responds to diabetic obesity differently.
View on PubMed2010
CONTEXT
Primary hyperparathyroidism (PHPT) is characterized by elevated serum calcium (Ca) and increased PTH concentrations.
OBJECTIVE
The objective of the investigation was to establish the efficacy of cinacalcet in reducing serum Ca in patients with PHPT across a wide spectrum of disease severity.
DESIGN AND SETTING
The study was a pooled analysis of data from three multicenter clinical trials of cinacalcet in PHPT.
PATIENTS
Patients were grouped into three disease categories for analysis based on the following: 1) history of failed parathyroidectomy (n = 29); 2) meeting one or more criteria for parathyroidectomy but without prior surgery (n = 37); and 3) mild asymptomatic PHPT without meeting criteria for either above category (n = 15).
INTERVENTION
The intervention in this study was treatment with cinacalcet for up to 4.5 yr.
OUTCOMES
Measurements in the study included serum Ca, PTH, phosphate, and bone-specific alkaline phosphatase, and areal bone mineral density (aBMD). Vital signs, safety biochemical and hematological indices, and adverse events were monitored throughout the study period.
RESULTS
The extent of cinacalcet-induced serum Ca reduction, proportion of patients achieving normal serum Ca (≤10.3 mg/dl), reduction in serum PTH, and increase in serum phosphate were similar across all three categories. Except for decreased aBMD at the total femur indicated for parathyroidectomy group at 1 yr, no significant changes in aBMD occurred. The efficacy of cinacalcet was maintained for up to 4.5 yr of follow-up. AEs were mild and similar across the three categories.
CONCLUSIONS
Cinacalcet is equally effective in the medical management of PHPT patients across a broad spectrum of disease severity, and overall cinacalcet is well tolerated.
View on PubMed2010
Analgesic efficacy varies depending on the pain syndrome being treated. One reason for this may be a differential effect of individual pain syndromes on the function of the endogenous pain control circuits at which these drugs act to produce analgesia. To test this hypothesis, we examined the effects of diverse (i.e., ongoing inflammatory, neuropathic, or chronic widespread) pain syndromes on analgesia induced by activation of an opioid-mediated, noxious stimulus-induced endogenous pain control circuit. This circuit was activated by subdermal capsaicin injection at a site remote from the site of nociceptive testing. Analgesia was not affected by carrageenan-induced inflammatory pain or the early phase of oxaliplatin neuropathy (a complication of cancer chemotherapy). However, the duration of analgesia was markedly shorter in the late phase of oxaliplatin neuropathy and in alcoholic neuropathy. A model of fibromyalgia syndrome produced by chronic unpredictable stress and proinflammatory cytokines also shortened analgesia duration, but so did the same stress alone. Therefore, since chronic pain can activate neuroendocrine stress axes, we tested whether they are involved in the attenuation of analgesic duration induced by these pain syndromes. Rats in which the sympathoadrenal axis was ablated by adrenal medullectomy showed normal duration pain-induced analgesia in groups with either late-phase oxaliplatin neuropathy, alcoholic neuropathy, or exposure to sound stress. These results support the suggestion that pain syndromes can modulate activity in endogenous pain control circuits and that this effect is sympathoadrenal dependent.
View on PubMed2010
2010