Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2013
Tissue-specific gene expression is thought to be one of the major forces shaping mammalian gene order. A recent study that used whole-genome chromosome conformation assays has shown that the mammalian genome is divided into specific topological domains that are shared between different tissues and organisms. Here, we wanted to assess whether gene expression and regulation are involved in shaping these domains and can be used to classify them. We analyzed gene expression and regulation levels in these domains by using RNA-seq and enhancer-associated ChIP-seq datasets for 17 different mouse tissues. We found 162 domains that are active (high gene expression and regulation) in all 17 tissues. These domains are significantly shorter, contain less repeats, and have more housekeeping genes. In contrast, we found 29 domains that are inactive (low gene expression and regulation) in all analyzed tissues and are significantly longer, have more repeats, and gene deserts. Tissue-specific active domains showed some correlation with tissue-type and gene ontology. Domain temporal gene regulation and expression differences also displayed some gene ontology terms fitting their temporal function. Combined, our results provide a catalog of shared and tissue-specific topological domains and suggest that gene expression and regulation could have a role in shaping them.
View on PubMed2013
Detection of the Mycobacterium tuberculosis cell wall antigen lipoarabinomannan (LAM) in urine permits diagnoses of tuberculosis (TB) to be made in HIV-infected patients with advanced immunodeficiency. This can be achieved at the point-of-care within just 30 minutes using the Determine TB-LAM, which is a commercially available, lateral-flow urine 'strip test' assay. The assay has been shown to have useful diagnostic accuracy in patients enrolling in antiretroviral treatment services or in HIV-infected patients requiring admission to hospital medical wards in sub-Saharan Africa. Such patients have high mortality risk and have most to gain from rapid diagnosis of TB and immediate initiation of treatment. However, few studies using this assay have yet been reported and many questions remain concerning the correct use of the assay, interpretation of results, the role of the assay as an add-on test within existing diagnostic algorithms and the types of further studies needed. In this paper we address a series of questions with the aim of informing the design, conduct and interpretation of future studies. Specifically, we clarify which clinical populations are most likely to derive benefit from use of this assay and how patients enrolled in such studies might best be characterised. We describe the importance of employing a rigorous microbiological diagnostic reference standard in studies of diagnostic accuracy and discuss issues surrounding the specificity of the assay in different geographical areas and potential cross-reactivity with non-tuberculous mycobacteria and other organisms. We highlight the importance of careful procedures for urine collection and storage and the critical issue of how to read and interpret the test strips. Finally, we consider how the assay could be used in combination with other assays and outline the types of studies that are required to build the evidence base concerning its use.
View on PubMed2013
2013
2013
2013
2013
Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hypertrophy and contractile dysfunction regularly observed in patients with aortic stenosis. Stress-sensing mechanisms in cardiomyocytes and activation of cardiomyocyte death by elevated wall stress continue to intrigue cardiovascular scientists.
View on PubMed2013
2013
Viruses suppress host responses to increase infection, and understanding these mechanisms has provided insights into cellular signaling and led to novel therapies. Many viruses (e.g., Influenza virus, Rhinovirus [RV], Cytomegalovirus, Epstein-Barr virus, and Hepatitis C virus) activate epithelial epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, but the role of EGFR in viral pathogenesis is not clear. Interferon (IFN) signaling is a critical innate antiviral host response and recent experiments have implicated IFN-λ, a type III IFN, as the most significant IFN for mucosal antiviral immune responses. Despite the importance of IFN-λ in epithelial antiviral responses, the role and mechanisms of epithelial IFN-λ signaling have not been fully elucidated. We report that respiratory virus-induced EGFR activation suppresses endogenous airway epithelial antiviral signaling. We found that Influenza virus- and RV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-induced IFN-λ production and increased viral infection. In addition, inhibition of EGFR during viral infection augmented IRF1 and IFN-λ, which resulted in decreased viral titers in vitro and in vivo. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.
View on PubMed