Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2003
Microarray experiments have identified novel candidate genes in animal models of asthma. In the near future, genomics may have a profound impact on the way we think about this common and complex disease.
View on PubMed2003
2003
2003
2003
2003
2003
Gamma-melanocyte-stimulating hormone (gamma-MSH) is a natriuretic peptide derived from proopiomelanocortin (POMC) in the pituitary neurointermediate lobe (NIL); its plasma concentration in rats doubles after ingestion of a high (HSD; 8% NaCl) compared with a low sodium diet (LSD; 0.07%). Because NIL function is regulated through dopaminergic pathways, we asked whether dopaminergic stimulation with bromocriptine (5 mg/kg IP daily for 1 week) or inhibition with haloperidol (5 mg/kg IP for 1 week) alters the gamma-MSH response to a HSD. In vehicle-treated rats, plasma gamma-MSH and NIL gamma-MSH content on the HSD were both markedly elevated over values in rats on the LSD (P<0.001); no difference in mean arterial pressure (MAP) occurred. In haloperidol-treated rats on the LSD, both plasma gamma-MSH and NIL gamma-MSH content were greater than in vehicle-treated rats (P<0.05) and did not increase further on the HSD; MAP was also no different. In bromocriptine-treated rats, neither plasma gamma-MSH nor NIL gamma-MSH content increased on the HSD versus LSD, and MAP was markedly elevated on the HSD (132+/-3 versus 106+/-3 mm Hg, P<0.001). Intravenous infusion of gamma-MSH (0.4 pmol/min) to bromocriptine-treated rats on the HSD restored plasma gamma-MSH concentration to a level appropriate for the HSD and lowered MAP from 131+/-6 to 108+/-5 mm Hg (P<0.01). These results demonstrate that the increases in NIL content and plasma concentration of gamma-MSH normally occurring during ingestion of the HSD are prevented by dopaminergic suppression of NIL function. This results in deficiency of gamma-MSH on the HSD and is accompanied by elevated blood pressure, which is corrected by infusion of the peptide. gamma-MSH may be an important component in the normal response to a HSD; interruption of this response leads to salt-sensitive hypertension.
View on PubMed2003
CYP3A4-transfected Caco-2 cells were used as an in vitro system to predict the importance of drug metabolism and transport on overall drug absorption. We examined the transport and metabolism of two drugs; midazolam, an anesthetic agent and CYP3A4 substrate, and sirolimus, an immunosuppressant and a dual CYP3A4/P-glycoprotein (P-gp) substrate, in the presence of cyclosporine (CsA, a CYP3A4/P-gp inhibitor) or N-[4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl]-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamine (GG918) (an inhibitor of P-gp and not CYP3A4). All major CYP3A4 metabolites were formed in the cells (1-OH > 4-OH midazolam and 39-O-desmethyl > 12-OH > 11-OH sirolimus), consistent with results from human liver microsomes. There was no bidirectional transport of midazolam across CYP3A4-transfected Caco-2 cells, whereas there was a 2.5-fold net efflux of sirolimus (1 microM) that disappeared in the presence of CsA or GG918. No change in the absorption rate or extraction ratio (ER) for midazolam was observed when P-gp was inhibited with GG918. Addition of GG918 had a modest impact on the absorption rate and ER for sirolimus (increased 58% and decreased 25%, respectively), whereas a 6.1-fold increase in the absorption rate and a 75% decrease in the ER were found when sirolimus was combined with CsA. Although both midazolam and sirolimus metabolites were preferentially excreted to the apical compartment, only sirolimus metabolites were transported by P-gp as determined from inhibition studies with GG918. Using CYP3A4-transfected Caco-2 cells we determined that, in contrast to P-gp, CYP3A4 is the major factor limiting sirolimus absorption. The integration of CYP3A4 and P-gp into a combined in vitro system was critical to unveil the relative importance of each biochemical barrier.
View on PubMed