Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2005
2005
2005
2005
2005
2005
Our inability to associate distant regulatory elements with the genes they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries, we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBSs), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes they regulate. A total of 2116 and 1942 CBSs >200 kb were assembled for HMC and HMF, respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBSs, we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a gene's regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide an extensive data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.
View on PubMed2005
Corneal epithelial (CE) stem cells are believed to reside in the basal layer of the limbal epithelium but remain poorly understood due to the lack of an accepted in vivo reconstitution assay as well as definitive markers for epithelial stem cells. It has been reported that side-population (SP) cells with the ability to efflux the DNA-binding dye Hoechst 33342 have stem cell-like properties and that the SP phenotype accurately represents a quiescent and immature stem cell population in the adult bone marrow. In the present study, we investigated whether SP cells isolated from the limbal epithelium have stem cell-like properties. SP cells, separated by fluorescence-activated cell sorting, comprise approximately 0.4% of all limbal epithelial cells and have markedly higher expression of the stem cell markers ABCG2, Bmi-1, and nestin but no expression of markers for differentiated CE cells compared with non-SP cells. Cell-cycle and telomerase activity analyses revealed that SP cells are growth arrested and reside in the quiescent state. Moreover, limbal epithelial SP cells did not demonstrate proliferative capabilities under typical in vitro epithelial cell culture conditions using 3T3 feeder layers. These findings present the possibility that quiescent limbal epithelial SP cells may represent an extremely immature stem cell population compared with currently defined epithelial stem or progenitor cells.
View on PubMed