Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2023
2023
2023
2023
2023
2023
2023
BACKGROUND
Clinical and echocardiographic features may carry diverse information about the development of heart failure (HF). Therefore, we determined heterogeneity in clinical and echocardiographic phenotypes and its association with exercise capacity.
METHODS
In 2036 community-dwelling individuals, we defined echocardiographic profiles of left and right heart remodeling and dysfunction. We subdivided the cohort based on presence (+) or absence (-) of HF risk factors (RFs) and echocardiographic abnormalities (RF-/Echo-, RF-/Echo+, RF+/Echo-, RF+/Echo+). Multivariable-adjusted associations between subgroups and physical performance metrics from 6-minute walk and treadmill exercise testing were assessed.
RESULTS
The prevalence was 35.3% for RF-/Echo-, 4.7% for RF-/Echo+, 39.3% for RF+/Echo-, and 20.6% for RF+/Echo+. We observed large diversity in echocardiographic profiles in the Echo+ group. Participants with RF-/Echo+ (18.6% of Echo+) had predominantly echocardiographic abnormalities other than left ventricular (LV) diastolic dysfunction, hypertrophy and reduced ejection fraction, whereas their physical performance was similar to RF-/Echo-. In contrast, participants with RF+/Echo+ presented primarily with LV hypertrophy or dysfunction, features that related to lower 6-minute walking distance and lower exercise capacity.
CONCLUSIONS
Subclinical echocardiographic abnormalities suggest HF pathogenesis, but the presence of HF risk factors and type of echo abnormality should be considered so as to distinguish adverse from benign adaptation and to stratify HF risk.
View on PubMed