Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2003
2003
2003
2003
2003
BACKGROUND
Clinically, chronic atrial dilatation is associated with an increased incidence of atrial fibrillation (AF), but the underlying mechanism is not clear. We have investigated atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation (MR).
METHODS AND RESULTS
Thirteen control and 19 MR dogs (1 month after partial mitral valve avulsion) were studied. Dogs in the MR group were monitored using echocardiography and Holter recording. In open-chest follow-up experiments, electrode arrays were placed on the atria to investigate conduction patterns, effective refractory periods, and inducibility of AF. Alterations in tissue structure and ultrastructure were assessed in atrial tissue samples. At follow-up, left atrial length in MR dogs was 4.09+/-0.45 cm, compared with 3.25+/-0.28 at baseline (P<0.01), corresponding to a volume of 205+/-61% of baseline. At follow-up, no differences in atrial conduction pattern and conduction velocities were noted between control and MR dogs. Effective refractory periods were increased homogeneously throughout the left and right atrium. Sustained AF (>1 hour) was inducible in 10 of 19 MR dogs and none of 13 control dogs (P<0.01). In the dilated MR left atrium, areas of increased interstitial fibrosis and chronic inflammation were accompanied by increased glycogen ultrastructurally.
CONCLUSIONS
Chronic atrial dilatation in the absence of overt heart failure leads to an increased vulnerability to AF that is not based on a decrease in wavelength.
View on PubMed2003
2003
2003
This paper reports the EPR spectroscopic characterization of a model membrane system that magnetically aligns with a variety of different lanthanide ions in the applied magnetic field (<1 T) of an X-band EPR spectrometer. The ability to align phospholipid bilayer systems is valuable because the anisotropic spectra provide a more detailed and complete description of the structural and motional properties of the membrane-associated spin label when compared to randomly dispersed EPR spectra. The nitroxide spin probe 3beta-doxyl-5alpha-cholestane (cholestane or CLS) was inserted into the bilayer discs to demonstrate the effects of macroscopic bilayer alignment through the measurement of orientational dependent hyperfine splittings. The effects of different lanthanide ions with varying degrees of magnetic susceptibility anisotropy and relaxation properties were examined. For X-band EPR studies, the minimal amounts of the Tm(3+), Yb(3+), and Dy(3+) lanthanide ions needed to align the phospholipid bilayers were determined. Power saturation EPR experiments indicate that for the sample compositions described here, the spin-lattice relaxation rate of the CLS spin label was increased by varying amounts in the presence of different lanthanide (Gd(3+), Dy(3+), Er(3+), Yb(3+), and Tm(3+)) ions, and in the presence of molecular oxygen. The addition of Gd(3+) caused a significant increase in the spin-lattice relaxation rate of CLS when compared to the other lanthanide ions tested.
View on PubMed2003
PURPOSE
To develop and validate an interleaved-spiral diffusion pulse sequence capable of hyperpolarized (3)He MR imaging of the whole lung in less than 10 seconds.
MATERIALS AND METHODS
Hyperpolarized (3)He diffusion measurements were performed in seven healthy volunteers and five patients with emphysema using an interleaved-spiral pulse sequence that provided 11 contiguous 15-mm thick coronal ADC maps, with an in-plane resolution of 3.9 mm, covering the whole lung in 5.5 seconds. The resulting means and SDs of ADC values were compared statistically to those from a gradient-echo pulse sequence with identical resolution and diffusion-weighting gradients that acquired five ADC maps in 10.5 seconds.
RESULTS
High-quality diffusion-weighted interleaved-spiral images covering the whole lung were obtained, and showed no significant susceptibility-induced image degradation compared to corresponding gradient-echo images. On a subject-by-subject basis, the means and SDs of ADC values for the interleaved-spiral technique were not statistically different from those for the gradient-echo technique. The mean ADC values from the two techniques were highly correlated on a section-by-section basis (R = 0.99).
CONCLUSION
The interleaved-spiral diffusion pulse sequence permits rapid acquisition of contiguous ADC maps covering the whole lung during a short breath-hold period, and provides ADC values that are statistically equivalent to those from standard gradient-echo techniques.
View on PubMed2003