Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2003
2003
2003
Lung CD25 CD4 regulatory T cells suppress type 2 immune responses but not bronchial hyperreactivity.
2003
To study the effects of chronic Ag deposition in the airway mucosa on CD4(+) T cell priming and subsequent airway disease, transgenic mice were generated that expressed OVA under the control of the surfactant protein C promoter. CD4 T cells from these mice were tolerant to OVA but this was overcome among spleen CD4 T cells by crossing to OVA-specific DO11.10 TCR-transgenic mice. Lungs from the double-transgenic mice developed lymphocytic infiltrates and modest mucus cell hyperplasia. Infiltrating cells were unaffected by the absence of either Rag-1 or Stat6, although the latter deficiency led to the disappearance of mucus. In the lung of double-transgenic mice, a large number of Ag-specific CD4 T cells expressed CD25 and functioned as regulatory T cells. The CD25(+) CD4 T cells suppressed proliferation of CD25(-) CD4 T cells in vitro and inhibited type 2 immune responses induced by aerosolized Ags in vivo. Despite their ability to suppress allergic type 2 immunity in the airways, however, CD25(+) CD4 regulatory T cells had no effect on the development of bronchial hyperreactivity.
View on PubMed2003
The elderly are characterized by mucosal immunosenescence and high rates of morbidity and mortality associated with infectious diseases of the intestinal tract. Little is known about how the differentiation of immunoglobulin A (IgA) plasma cells in Peyer's patches (PPs) and their subsequent homing to the small intestinal lamina propria (LP) is affected by aging. Quantitative immunohistochemical analyses demonstrated a 2-fold increase in the number of IgA+ cells in the PPs, coupled with significant declines in the numbers of IgA+ and antibody-positive cells in the intestinal LP of senescent rats compared to young adult animals. These data suggest that aging diminishes the emigration of IgA immunoblasts from these lymphoid aggregates, as well as their migration to the intestinal LP. Flow cytometry and lymphocyte adoptive transfer studies showed 3- to 4-fold age-related declines in the homing of antibody-containing cells and mesenteric lymph node lymphocytes to the small intestines of rhesus macaques and rats, respectively. The number of peripheral blood IgA immunoblasts expressing the homing molecule alpha4beta7 declined 30% in senescent rats. This was accompanied by a > 17% decrease in the areal density of LP blood vessels staining positive for the cell adhesion molecule MAdCAM-1. Cumulatively, declines in expression of these homing molecules constitute a substantial age-related diminution of IgA immunoblast homing potential. In vitro antibody secretion by LP plasma cells, i.e. antibody secreted per antibody-positive cell, remains unchanged as a function of donor age. Intestinal mucosal immunosenescence is a consequence of reduced homing of IgA plasma cells to the intestinal LP as a result of declines in homing molecule expression.
View on PubMed2003
Approximately 85% of acute cases of hepatitis C infection result in chronic hepatitis. Spontaneous clearance of hepatitis C virus has been thought to occur exclusively after acute infection and is associated with a robust cellular immune response. We describe here a case of a renal transplant recipient who acquired posttransplant hepatitis C virus infection with rapid histological progression but who subsequently experienced spontaneous viral clearance along with histological remission after removal of immunosuppression. Immunologic studies showed persistently strong cellular immune responses. This case underscores the importance of restoration of the immune system in the control of hepatitis C virus viremia and disease progression and the need to minimize or obviate immunosuppression in organ transplant recipients.
View on PubMed2003
Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.
View on PubMed2003
Although basal permeability barrier function is established at birth, the higher risk for infections, dermatitis, and percutaneous absorption of toxic agents may indicate incomplete permeability barrier maturation in the early neonatal period. Since stratum corneum (SC) acidification in adults is required for normal permeability barrier homeostasis, and lipid processing occurs via acidic pH dependent enzymes, we hypothesized that, in parallel with the less acidic surface pH, newborn SC would exhibit signs of incomplete barrier formation. Fluorescence lifetime imaging reveals that neonatal rat SC acidification first becomes evident by postnatal day 3, in extracellular "microdomains" at the SC- stratum granulosum (SG) interface, where pH-sensitive lipid processing is known to occur. This localized acidification correlated temporally with efficient processing of secreted lamellar body contents to mature extracellular lamellar bilayers. Since expression of the key acidifying mechanism NHE1 is maximal just prior to birth, and gradually declines over the first postnatal week, suboptimal SC acidification at birth cannot be attributed to insufficient NHE1 expression, but could instead reflect reduced NHE1 activity. Expression of the key lipid processing enzyme, beta-glucocerebrosidase (beta-GlcCer'ase), develops similar to NHE1, excluding a lack of beta-GlcCer'ase protein as rate limiting for efficient lipid processing. These results define a postnatal development consisting of initial acidification in the lower SC followed by outward progression, which is accompanied by formation of mature extracellular lamellar membranes. Thus, full barrier competence appears to require the extension of acidification in microdomains from the SC/SG interface outward toward the skin surface in the immediate postnatal period.
View on PubMed2003
Several of the ATP binding cassette (ABC) transporters have recently been shown to play important roles in reverse cholesterol transport (RCT) and prevention of atherosclerosis. In the liver, ABCG5 and ABCG8 have been proposed to efflux sterols into the bile for excretion. ABCG5 and ABCG8 also limit absorption of dietary cholesterol and plant sterols in the intestine. In macrophages, ABCA1 and ABCG1 mediate cholesterol removal from these cells to HDL. Many of these ABC transporters are regulated by the liver X receptor (LXR). We have previously shown that endotoxin (lipopolysaccharide) down-regulates LXR in rodent liver. In the present study, we examined the in vivo and in vitro regulation of these ABC transporters by endotoxin. We found that endotoxin significantly decreased mRNA levels of ABCG5 and ABCG8 in the liver, but not in the small intestine. When endotoxin or cytokines (tumor necrosis factor and interleukin-1) were incubated with J774 murine macrophages, the mRNA levels of ABCA1 were decreased. This effect was rapid and sustained, and was associated with a reduction in ABCA1 protein levels. Endotoxin and cytokines also decreased ABCG1 mRNA levels in J774 cells. Although LXR is a positive regulator of ABCA1 and ABCG1, we did not observe a reduction in protein levels of LXR or in binding of nuclear proteins to an LXR response element in J774 cells. The decrease in ABCG5 and ABCG8 levels in the liver as well as a reduction in ABCA1 and ABCG1 in macrophages during the host response to infection and inflammation coupled with other previously described changes in the RCT pathway may aggravate atherosclerosis.
View on PubMed