Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2009
2009
2009
While glucocorticoids (GC) exert beneficial effects (anti-inflammatory), they also have adverse effects on the epidermis including decreased epidermal differentiation, decreased keratinocyte proliferation, and decreased cutaneous permeability barrier homeostasis. Thus, the purpose of this study was to develop strategies to prevent these GC toxicities using simultaneous topical treatments in clobetasol-treated mice. While a triple-lipid mixture of stratum corneum lipids (ceramide, free fatty acid and cholesterol) was previously shown to reverse the GC-induced abnormality in cutaneous barrier function [J Invest Dermatol, 120 (2003) 456], this lipid mixture did not prevent the GC-induced abnormalities in either keratinocyte proliferation or differentiation. As activators of PPARalpha, beta/delta, gamma and LXR, regulate keratinocyte proliferation and differentiation and improve permeability barrier homeostasis, we next assessed the effects of these activators during concurrent GC treatment. Co-application of either ciglitazone (PPARgamma activator), clofibrate (PPARalpha activator) or 22R (OH) cholesterol (LXR activator) with clobetasol prevented the decrease in involucrin, filaggrin and loricrin expression. By contrast, a PPARbeta/delta activator (GW501516) normalized only the expression of involucrin and filaggrin but not loricrin. Moreover, topical application of PPARalpha, beta/delta or LXR activators partially prevented the decrease in keratinocyte proliferation in GC-treated murine skin, as measured using PCNA, while no effect was seen after co-treatment with PPARgamma activators. Finally, PPARgamma and PPARbeta/delta activators but not PPARalpha and LXR activators improved permeability barrier homeostasis in GC-treated mice. Together, these studies demonstrate that PPAR and LXR activators can prevent several of the adverse effects of topical GC on the epidermis.
View on PubMed2009
2009
2009
2009
2009
2009
Autoimmune-prone nonobese diabetic mice deficient for B7-2 spontaneously develop an autoimmune peripheral neuropathy mediated by inflammatory CD4(+) T cells that is reminiscent of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. To determine the etiology of this disease, CD4(+) T cell hybridomas were generated from inflamed tissue-derived CD4(+) T cells. A majority of T cell hybridomas were specific for myelin protein 0 (P0), which was the principal target of autoantibody responses targeting nerve proteins. To determine whether P0-specific T cell responses were sufficient to mediate disease, we generated a novel myelin P0-specific T cell receptor transgenic (POT) mouse. POT T cells were not tolerized or deleted during thymic development and proliferated in response to P0 in vitro. Importantly, when bred onto a recombination activating gene knockout background, POT mice developed a fulminant form of peripheral neuropathy that affected all mice by weaning age and led to their premature death by 3-5 wk of age. This abrupt disease was associated with the production of interferon gamma by P0-specific T cells and a lack of CD4(+) Foxp3(+) regulatory T cells. Collectively, our data suggest that myelin P0 is a major autoantigen in autoimmune peripheral neuropathy.
View on PubMed