Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2014
2014
2014
2014
BACKGROUND
Perfluoroalkyl chemicals (PFCs) are a family of commonly used industrial chemicals whose persistence and ubiquity in human blood samples has led to concern about possible toxicity. Several animal studies and one recent human study have suggested a link between exposure to PFCs and asthma, although few epidemiologic studies have been conducted.
OBJECTIVES
We investigated children's PFC serum concentrations and their associations with asthma-related outcomes.
METHODS
We evaluated the association between serum concentrations of eight PFCs, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), with self-reported lifetime asthma, recent wheezing, and current asthma using data from participants 12-19 years of age from the 1999-2000 and 2003-2008 National Health and Nutrition Examination Surveys.
RESULTS
In multivariable-adjusted models, PFOA was associated with higher odds of ever having received a diagnosis of asthma [odds ratio (OR) = 1.18; 95% CI: 1.01, 1.39 for a doubling in PFOA], whereas for PFOS there were inverse relationships with both asthma and wheezing (OR = 0.88; 95% CI: 0.74, 1.04, and OR = 0.83; 95% CI: 0.67, 1.02, respectively). The associations were attenuated after accounting for sampling weights. No associations were seen between the other PFCs and any outcome.
CONCLUSIONS
This cross-sectional study provides some evidence for associations between exposure to PFCs and asthma-related outcomes in children. The evidence is inconsistent, however, and prospective studies are needed.
View on PubMed2014
2014
2014
Beige fat, which expresses the thermogenic protein UCP1, provides a defense against cold and obesity. Although a cold environment is the physiologic stimulus for inducing beige fat in mice and humans, the events that lead from the sensing of cold to the development of beige fat remain poorly understood. Here, we identify the efferent beige fat thermogenic circuit, consisting of eosinophils, type 2 cytokines interleukin (IL)-4/13, and alternatively activated macrophages. Genetic loss of eosinophils or IL-4/13 signaling impairs cold-induced biogenesis of beige fat. Mechanistically, macrophages recruited to cold-stressed subcutaneous white adipose tissue (scWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production, factors required for browning of scWAT. Conversely, administration of IL-4 to thermoneutral mice increases beige fat mass and thermogenic capacity to ameliorate pre-established obesity. Together, our findings have uncovered the efferent circuit controlling biogenesis of beige fat and provide support for its targeting to treat obesity.
View on PubMed2014