Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2020
2020
2020
2020
2020
2020
2020
2020
Echocardiography is the commonest medical ultrasound examination, but automated interpretation is challenging and hinges on correct recognition of the 'view' (imaging plane and orientation). Current state-of-the-art methods for identifying the view computationally involve 2-dimensional convolutional neural networks (CNNs), but these merely classify individual frames of a video in isolation, and ignore information describing the movement of structures throughout the cardiac cycle. Here we explore the efficacy of novel CNN architectures, including time-distributed networks and two-stream networks, which are inspired by advances in human action recognition. We demonstrate that these new architectures more than halve the error rate of traditional CNNs from 8.1% to 3.9%. These advances in accuracy may be due to these networks' ability to track the movement of specific structures such as heart valves throughout the cardiac cycle. Finally, we show the accuracies of these new state-of-the-art networks are approaching expert agreement (3.6% discordance), with a similar pattern of discordance between views.
View on PubMed2020
Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease, screening for cardiotoxicity and decisions regarding the clinical management of patients with a critical illness. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.
View on PubMed