Publications
Department of Medicine faculty members published more than 3,000 peer-reviewed articles in 2022.
2020
Natural killer (NK) cells are among the first responders to viral infections. The ability of NK cells to rapidly recognize and kill virally infected cells is regulated by their expression of germline-encoded inhibitory and activating receptors. The engagement of these receptors by their cognate ligands on target cells determines whether the intercellular interaction will result in NK cell killing. This protocol details the design and optimization of two complementary mass cytometry (CyTOF) panels. One panel was designed to phenotype NK cells based on receptor expression. The other panel was designed to interrogate expression of known ligands for NK cell receptors on several immune cell subsets. Together, these two panels allow for the profiling of the human NK cell receptor-ligand repertoire. Furthermore, this protocol also details the process by which we stain samples for CyTOF. This process has been optimized for improved reproducibility and standardization. An advantage of CyTOF is its ability to measure over 40 markers in each panel, with minimal signal overlap, allowing researchers to capture the breadth of the NK cell receptor-ligand repertoire. Palladium barcoding also reduces inter-sample variation, as well as consumption of reagents, making it easier to stain samples with each panel in parallel. Limitations of this protocol include the relatively low throughput of CyTOF and the inability to recover cells after analysis. These panels were designed for the analysis of clinical samples from patients suffering from acute and chronic viral infections, including dengue virus, human immunodeficiency virus (HIV), and influenza. However, they can be utilized in any setting to investigate the human NK cell receptor-ligand repertoire. Importantly, these methods can be applied broadly to the design and execution of future CyTOF panels.
View on PubMed2020
Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, its local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. While we did not find that transmission dynamics in Basel correlate with humidity or school closures, we did find some evidence that it may positively correlated with temperature. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network. In the remaining transmission network, our analyses suggest that school-aged children likely play a more central role than pre-school aged children. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities.
View on PubMed2020
2020
2020
2020
2020
2020
2020